# The C/O Ratio and Peak Luminosity Variations in SNe Ia

Röpke & Hillebrandt – astro-ph/0403509 March 30, 2004

#### **Talk Outline**

- How are these models evaluated?
- Historical review.
- More recent historical review.
- Collect vocabulary terms.
- About this paper.

### **Observables – Lightcurves**



### Observables – Spectra



#### **Composition Models**

The SN theory community consists of two sometimes overlapping groups.

#### Explosion Modellers

- 1. Specify an initial stellar model, blow it up!
- 2. Follow nuclear reactions, neutrinos, hydrodynamics.
- 3. End up with a composition model.
- People: A. Khokhlov, W. Hillebrandt, S. Woosley, P. Höflich, K. Nomoto, D. Arnett, E. Livne...
- Places: NRL, ASCI/Flash, MPA, Santa Cruz, various and sundry national labs.
- Codes: Flash, Prometheus, others...

#### **Emergent Spectra & Lightcurves**

The SN theory community consists of two sometimes overlapping groups.

#### Radiation Modellers

- 1. Obtain or specify a composition model.
- 2. Somehow solve the non-equilibrium, time dependent model atmospheres problem. Or not!
- 3. End up with an **emergent spectrum**.
- People: D. Branch, E. Baron, P. Nugent, P. Höflich, P. Mazzali...
- Places: OU, LBL, Texas, MPA...
- Codes: Phoenix, Synow, Lucy/Mazzali MC code.

### **Burning Regime One**

#### **Detonation**

- Flame propagates faster than sound crossing time in a fixed volume supersonic.
- If ignition occurs in the center, outer layers of WD never know what hit them.
- WD never gets to readjust (expand) structure, so density stays high during burning.
- At high density, burning proceeds to the peak of the binding energy per nucleon curve and you get Fe-peak.

#### ⇒ No Intermediate Mass Elements

### **Burning Regime Two**

#### **Deflagration**

- Flame propagates slower than sound crossing time in a fixed volume subsonic.
- If ignition occurs in the center, WD may expand somewhat during burning.
- Burning front encounters lower density stuff above, at densities where the flame converts the C/O into Mg, Si, S, Ca but not so much Fe-peak.
- If the front proceeds slow enough, burning may quench if density drops below some threshold.
  - ⇒ Fe-peak Surrounded by Intermediate Mass Elements, Perhaps C/O Sitting on Top

### Other Kinds of Burning

There are combinations of the two.

- Deflagration-to-detonation transition (DDT) lower the density by deflagration and then start the detonation... somehow.
- Pulsating delayed detonation (PDD) multiple explosions.
- Off-center detonations.

#### Gold Standard 1D Model, W7

- Start with 1  $M_{\odot}$  with X(C, O, Ne) = (0.475, 0.5, 0.025).
- Cool for  $5.8 \times 10^8$  years, then add H at  $4 \times 10^{-8} M_{\odot}$  yr<sup>-1</sup>.
- Convert it to He via weak (!) shell flashes.
- When central density is  $2.6 \times 10^9$  g cm<sup>-3</sup>, ignition.
- Mass is about 1.38  $M_{\odot}$  at ignition.
- High degeneracy, so the ignition runs away.
- Initially slow, then faster (0.08 to 0.30 times local  $c_s$ ).
- ullet 0.8  $M_{\odot}$  Fe-peak, (0.58  $M_{\odot}$   $^{56}$ Ni) up to 10000 km s $^{-1}$ .
- 0.5  $M_{\odot}$  of IME from O through Ca produced and ejected between 10000 and 15000 km s<sup>-1</sup>.
- 0.1  $M_{\odot}$  or less of unburned stuff on top.
- Final KE =  $1.3 \times 10^{51}$  erg.

### **Deflagration Model W7**



### Synthetic Spectra



Without mixing, W7 is not consistent with observations. But Mixing above about 8000 km s $^{-1}$  improved the fits.

# Synthetic Spectra



#### But the Universe is 3D

- Spherically symmetric models cannot include all the physics.
- The flame surface is not spherical, it is fractal.
- But the physics is hard!
- Scaling! Flame surface is 0.001 cm thick, and the WD is about 10<sup>8</sup> cm in radius: at least 11 orders of magnitude.
- And it's 3D! Track flame, do nuclear physics, basically eat computer memory.
  - Hillebrandt: Level set technique, fixed grid sizes that expand with the WD.
  - Khokhlov: Fully threaded tree, adaptive mesh refinement.
  - Nuclear physics? Please: fuel/ashes.

# 3D Deflagration – Reinecke





# 3D Deflagration – Gamezo



#### How Well Do the Models Do?

- Both sets of models have energy problems.
  - W7 produces 1 foe when binding energy is accounted for.
  - These models only produce about 0.8, 0.9 foe, without accounting for binding energy.
  - That's missing half a foe!
  - Hillebrandt et al: Let us get the resolution up.
  - Khokhlov: 4x effective resolution, still won't get you there.
- Pathological feature of these models:
  - Fuel and ashes are mixed at all radii, contrast to W7.
  - But is it a big deal? Eddie published Phoenix (1D!) results and said not really. Perhaps at nebular phase.

### This Paper I.

- Nobody understands the Phillips relation? Isn't this reasonable?
  - More Fe-peak ⇒ more opacity & energy ⇒ longer diffusion time for radiation ⇒ broader, brighter lightcurves.
  - Less Fe-peak ⇒ not as much opacity & energy ⇒ shorter diffusion time for radiation ⇒ dimmer, narrower lightcurves.
- Arnett ruled out detonations because they didn't produce IME's in 1969?
  - That would be something, considering they didn't know IME's were there!
  - Instead Arnett just said that detonations don't make IME's.

### This Paper II.

- One requirement of any complete model is a "knob" to give you variations in peak magnitude.
- But do they use an immature model?
- Vary the initial C/O ratio a bit.
- Note that the (inadequate?) Ni mass doesn't really vary with C/O ratio.
- Following Arnett's Law, luminosity and Ni mass are correlated, so varying C/O, according to RH, does not vary peak luminosity.

What do we conclude? Should we withhold judgment until the resolutions are improved in an effort to get the energy right?

### **Another More Promising Knob?**

- Timmes et al. 2003 ApJ 590, L83, analytical models.
- 56Ni mass produced depends linearly on the original metallicity of the WD progenitor 25% variation in mass!

